
1.	Which quantum number is related to the energy, shape and the number of angular nodes of / in an atomic orbital?					
	(a) n (b) 1	(c) m	(d) s		
2.	The number of 1	radial nodes	s in 5p orbi	tals is		
	(a) 4 (b	o) 3	(c) 2	(d) 1		
3.	Mercury, though (a) low cohe (b) low atom (c) low heat (d) All of a, l	sive energy ic number of dissociati	•	rmal temp	peratures because of its	
4.	Identify the series	s with correc	t order of st	ability of th	the complexes.	
	(a) [Cu(en) ₂]	Cl ₂ > [Cu(er	n)2](NO3)2	> [Cu(en)2]	2]SO4 .	
	(b) [Cu(tren)]	Cl ₂ > [Cu(e	n)2]Cl ₂ > [C	Cu(NH3)4]0	ICl ₂ .	
	(c) [Ag(NH ₃))4]Cl > [Au(NH3)4]Cl >	[Cu(NH3)4)4]Cl ₂ .	
	(d) [Cr(en) ₂](Cl ₂ > [Cu(er	$[2]Cl_2 > [Z_1]$	n(en)2]Cl2	2.	
	[en = ethylene dia	amine, tren =	triethylene	tetraamine]	e]	
5.	Which of the follo	owing transi	tion metal id	ons undergo	goes Jahn-Teller distortion?	
	(a) Cr ²⁺	(b) Cr ³⁺	(c) C	r ⁶⁺	(d) Co ³⁺	
6.	Alpha-graphite ar	nd beta-grap	hite have			
	 (a) Same hybridization of C orbitals but different chemical properties (b) Different hybridization of C orbitals and different chemical properties (c) Hexagonal structure (d) Different arrangement of stacks of layers 					
7.	Beryl and Emeral	ld, respectiv	ely, are exa	mples of		
	 (a) Both cyclic silicates, (b) Sheet silicates and orthosilicates (c) cyclic silicate and disilicate (d) pyrosilicate and sheet silicate 					
8.	Which of the follo	owing hydro	xides is bas	ic in charac	acter?	
	(a) Be(OH) ₂	(b) B(0	$OH)_3$ (c)	Al(OH) ₃	(d) TIOH	
9.	The anion, S ₂ O ₄ ² -	is named as				
	(a) Thiosulpl	hate (b) di	thionate	(c) dithioni	nite (d) tetrathionate	

- **10.** Which of the following is the most acidic? (Hint: Consider the dissociation of the first proton in case of more than one H present)
 - (a) $H_4P_2O_7$
- (b) H₃PO₃
- (c) H₃PO₄
- (d) $H_2PO_4^-$
- 11. The hybridization of Cl atom orbitals in ClF₃ and its shape are, respectively,
 - (a) sp², trigonal planar
 - (b) sp³, trigonal pyramidal
 - (c) dsp³, trigonal planar
 - (d) dsp³, bent T
- 12. The hydrophobicity of silicones is due to the presence of
 - (a) Si-O-Si framework
 - (b) Si-O-R groups
 - (c) Si-R groups
 - (d) Si-OH groups at the exterior
- 13. Doping of Indium in Silicon results in the
 - (a) formation of an n-type semiconductor
 - (b) addition of a conduction band with lower energy than that in Si
 - (c) addition of a valence band
 - (d) increase in the band gap
- 14. Given below is Frost diagram of an element. What does it indicate about the stability of various oxidation states of the element?

- (a) Oxidation state 3 is more stable than 2 and 4
- (b) Oxidation state 4 is less stable than 3 and 6
- (c) 2 is the least stable oxidation state
- (d) Species with oxidation states 3 and 6 are unstable
- **15.** Which of the following 2 reactions are possible?
 - i. $2FeCl_3 + SnCl_2 \rightarrow 2FeCl_2 + SnCl_4$
 - ii. 2FeCl₂ + SnCl₄ → 2FeCl₃ + SnCl₂
 - iii. $PbCl_2 + SnCl_4 \rightarrow SnCl_2 + PbCl_4$
 - iv. $SnCl_2 + PbCl_4 \rightarrow PbCl_2 + SnCl_4$
 - (a) i and ii (b) i and iii (c) i and iv (d) ii and iv

16.	Oxidation of ferrous ion by Ce ⁴⁺ and KMnO ₄ is attempted in separate reactions. The following is expected to happen.						
	(a) Ce ⁴⁺ is not a good oxidizing agent and hence, will not oxidize Fe ²⁺ quantitatively.						
	(b) KMnO4 is a stronger oxidizing agent with Mn in +7 oxidation state and hence the						
	reaction with KMnO4 will be faster.						
	(c) Both are strong oxidizing agents and hence both reactions will be equally fast.						
	(d) The reaction with Ce ⁴⁺ is a complementary reaction while that with KMnO ₄ is non-						
	complementary. Hence, the reaction with Ce ⁴⁺ will be faster.						
17.	The product formed in the reaction where 3 Cl ⁻ ligands in $[PtCl_4]^{2-}$ are successively substituted by one each of NH ₃ , NO ₂ ⁻ and py (= pyridine) in the same order is						
	(a) Trans-[$Pt < py(NH_3) > < Cl(NO_2) > $						
	(b) Trans- $[Pt < Cl(NH_3) > < py(NO_2) >]$ (c) Trans- $[Pt < Cl(py) > < (NH_3)(NO_2) >]$						
	(d) Trans-[Pt $Cl_2(NH_3)(py)$]						
18.	The entropy change during a ligand substitution reaction following A mechanism is						
	(a) Positive (b) Negtive (c) Zero (d) Either positive or negative						
19.	Which of the following can behave as a reducing agent?						
	(a) $Fe(\eta^5-C_5H_5)(CO)_3$						
	(b) $Mn(\eta^5 - C_5H_5)(CO)_3$						
	(c) $Cr(\eta^5-C_5H_5)(CO)_3$ (d) $Co(\eta^5-C_5H_5)(CO)_2$						
	(4)(1 -33)(72						
20.	A mixture of aqueous ZnCl2 and AlCl3 is treated with excess of concentrated sodium hydroxide						
	solution. The result should be the formation of						
	(a) Zn(OH) ₂ precipitate						
	(b) Al(OH)3 precipitate						
	(c) Both Zn(OH) ₂ and Al(OH) ₃ precipitates						
	(d) Clear solution						
21.	Metals A and B have same valence electron configuration and similar radii. Metal A crystallizes						
	in HCP lattice while metal B forms a BCC lattice.						
	(a) Metals A and B can form a superlattice						
	(b) Metals A and B can form an interstitial alloy(c) Metals A and B can form a random substitution alloy over a limited range of						
	composition						
	(d) They can not form any alloy						
22.	Which of the following statements is true about iron and its alloys?						
	(a) Cast iron is softer than pure iron						
	(b) Steel is a substitutional alloy(c) The hardness of steel is due to the occupation of interstitial sites						
	(d) Steel is harder than cast iron						

23. The lanthanide ions having a stable oxidation state other than +3 are

(a) La, Gd

(b) Er, Lu

(c) Gd, Lu

(d) Eu, Yb

24. Which of the following isotopes are fissile but artificially produced?

(a) 238 U, 239 Pu (b) 233 U, 238 U

(c) ^{235}U , ^{238}U

(d) ²³³U, ²³⁹Pu

25. Which of the following metal ions are involved at the active site of nitrogenase enzyme?

(a) Zn, Cu

(b) Mg, Fe

(c) Fe, Mo

(d) Mn, Co

Which of the following is Wilkinson's catalyst? 26.

(a) $[IrCO(PPh_3)_3]$

(b) $[RhCl(PPh_3)_3]$

(c) $Co_2(CO)_8$

(d) $RuCl_2(PPh_3)_4$

27. A sulphide ore is generally roasted to the oxide before reduction because

(a) Enthalpy of formation of CO₂ is highly negative while that of CS₂ is positive

(b) Metal sulphides are generally more stable than metal oxides

(c) Sulphide ores can not be reduced at all

(d) No reducing agent is found suitable for a sulphide ore

28. Which of the following metals is the strongest reducing agent?

(a) Cs

(b) Ce

(c) Cu

(d) Cr

29. The point symmetry of thiosulphate anion is

(b) C_{2V}

(c) C_{3V} (d) T_d

30. Aqueous ammonia is added to an aqueous solution containing chlorides of Ag⁺, Al³⁺, Fe³⁺, Cu^{2+} and Ni^{2+} to attain pH ≈ 10 and the solution filtered. Which of these ions will go in solution in complexed form?

(a) Ag^{+} , Al^{3+} , Fe^{3+}

(b) Cu²⁺, Ni²⁺, Ag⁺

(c) Al^{3+} , Fe^{3+} , Cu^{2+}

(d) Fe^{3+} , Cu^{2+} , Ni^{2+}

31. Which of the following structures is most stable, with minimum potential energy?

32. How many structural isomers one can give for a compound with the formula of C₂H₂F₄?

A. One;

B. Two;

C. Three;

D. Four

33.	Which free radical is most stable?					
	Me	Me	$\dot{\bigcirc}$			
	Α	В	С	D		

34.	How many chiral centres are present in the following compound?					
	Me Me Me Me					
	A. Zero; B. One; C. Two; D. Three					

35.	Which statement is correct for the following two compounds?			
	OH OH			
A	The hydroxyl in both I and II is oriented in equatorial position, in its most stable conformation.			
В	The hydroxyl in both I and II is oriented in axial position, in its most stable conformation.			
C	The hydroxyl in I will be axial, while it is equatorial in II, in its most stable conformation.			
D	The hydroxyl in I will be equatorial, while it is axial in II, in its most stable conformation.			

36.	How many stereoisomers are possible for 2,4-hexadiene?				
	A. Zero;	B . Two;	C. Three;	D . Four	

37.	Which order of reactivity is appropriate for the following compounds when treated with aqueous
	sodium hydroxide?
A	→ C >
В	~ CI > CI > CI
С	+c1 >
D	CI > \CI > \CI

38.	Which of the following compounds will have highest boiling point?			
	CH ₃ CH ₂ CH ₂ CH ₂ OCH ₃ CH ₃ CH ₂ CH ₂ CH ₂ CI			
	Α	В		
	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ OH	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ NH ₂		
	C	Ь		

39.	What product is	What product is formed when the following halohydrin is treated with NaOH?					
	ļ ļ						
	ОН						
	H						
	CI						
		✓ O H		6 0			
	A	В	C	D			

40.	Which position is most reactive for electrophilic substitution of 2-hydroxy naphthalene?
	D OH B

41.	Which is the most stable condition for the following conversion?		
	Et ?		
A	H ₂ , 10% Pd-C (Catal.)		
В	H ₂ , 5% Rh-Alumina (Catal.)		
С	LiAlH ₄ , dry Et ₂ O		
D	H ₂ , Pd on BaSO ₄ , 2% quinoline (Catal.)		

42.	Which of the following compounds will NOT undergo decarboxylation?					
	СООН	СООН	HOOC C	COOH		

43.	Which of the reaction?	following compo	unds will NOT prod	duce a monocyclic o	compound on ozonolysis
	A	B	c	D	

44.	Predict main product of the	ne following reaction.		
	excess H warm	Br → ?		
	A Br	→ Br & → OH	D OH	

45.	Suggest major pr	oduct of the follow	ing reaction.		
		H [†] ? :OH			
	OOEt	O "OEt	O _{OEt}	OEt	
	A	В	С	D	

46.	Which	of the follow	ing compounds	is/are aromatic in 1	nature?	
	⊕ △ I	⊜ △ ⊪	⊕ 	iv IV		
	A.	I and II	B. II and IV	C. I and IV	D. III and IV	

47.	What main product is temperature?	obtained when anthrace	ne is treated with liquid	bromine in CCl ₄ at low
	Br A	Br Br B	Br H C	D Br

48.	What major product is obtained when pher dilute sulfuric acid?	nanthrene is subjected to oxidation with K ₂ Cr ₂ O ₇ in
	0=\(\int_{A} \)	B
	c	D

49.	Suggest appropriate reagent and condition for the following conversion.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
A	Sn (metal) and HCl
В	Zn-Hg, HCl
С	H ₂ , Pd-C (Catal.)
D	$(NH_4)_2S$

50.	Some molecules show phosphorescence due to
A	Singlet to triplet crossing
В	Singlet to ground state transition
C	Triplet to ground state transition
D	Ground state to triplet excitation

51.	Which of the fol	lowing compound	ls can exist in tw	vo geometric	cal isomeric forms?	
	Me	Me	Me	Me	∍ `Cl	
	1	II	III	IV		
	A. I and II	B. II and III	C. I a	nd IV	D. III and IV	

52.	Which of the	following compo	ounds are examp	oles of hete	roannular dienes?	
	1	<i>II</i>	III	IV		
	A, I and II;	B, Only II;	C, I, III a	nd IV;	D , II and IV	

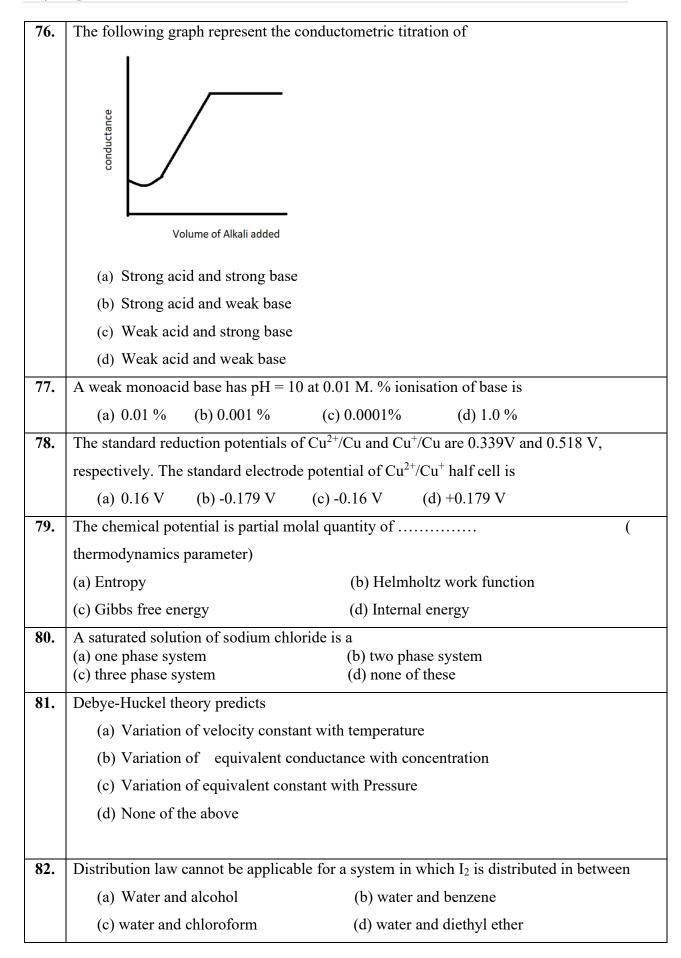
53.	Which carbohydrate	is main component	of "Table Sugar"?		
	A. Sucrose	B. Maltose	C. Glucose	D. Lactose	

54.	The Kiliani-Fischer synthesis involves
A	Lengthening of chain length of carbohydrate.
В	Shortening of chain length of carbohydrate.
C	The number of carbons remains unchanged.
D	The number of carbons remains unchanged, but involves oxidation.

55.	Which of the following four isomers will react faster, when heated with NaOH to give 1,2-			
	dimethylcyclohex-1-ene?			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

56.	What is the best way to distinguish methanol and ethanol in the laboratory?
A	By Iodoform Test
В	By Lucas Test
C	By Tollen's Reagent Test
D	Hinsberg Test

57.	What is the major product formed in the following reaction?			
	Ph	heat ?		
	Ph	Ph B	Ph C	Ph D


58.	In the following reaction, what change is observed in the IR stretching frequency of carbonyl group?		
	COOH COCI → COCI		
A	The stretching of cyclopentanecarboxylic acid (1790 cm ⁻¹) shifts to 1705 cm ⁻¹ in its acid chloride.		
В	The stretching of cyclopentanecarboxylic acid (1715 cm ⁻¹) shifts to 1690 cm ⁻¹ in its acid chloride.		
С	The stretching of cyclopentanecarboxylic acid (1735 cm ⁻¹) shifts to 1710 cm ⁻¹ in its acid chloride.		
D	The stretching of cyclopentanecarboxylic acid (1705 cm ⁻¹) shifts to 1790 cm ⁻¹ in its acid chloride.		

59.	Which of the fol	lowing compounds	s will show "quintet" signal (five line), due to spin-spin coupling?
	0 > 0		
	I	II	III
A	Only I		
В	Only II		
C	Only III		
D	I and II		

60.	Which of the	following compo	ounds is used as	a standard in H-NMR spect	roscopy?
	A . Me ₄ Si	B . Me ₄ C	C . Me ₂ O	D . D ₂ O	

61.	The relative rate of diffusion of a gas (molar mass= 128) as compared to oxygen is				
	(a) 2 times	(b) 1/4	(c) 1/8	(d) 1/2	
62.	At what temperature will hy	drogen molec	ules have the san	ne kinetic energy per mole as	
	nitrogen molecules at 280 K	ζ?			
	(a) 280 K	(b) 40K	(c) 400 K	(d) 50 K	
63.	Which as the highest boiling	g point?			
	(a) 0.1 M Na ₂ SO ₄		(b) $0.1 \text{ M C}_6\text{H}$	H ₁₂ O ₆ (glucose)	
	(c) 0.1 M MgCl ₂ (d) 0.1 M Al(NO ₃) ₃			$NO_3)_3$	
64.	The number of atoms per un	nit cell in a sir	nple cubic, face c	entred cubic and body centred	
	cubic arrangement are respectively				
	(a) 8, 14, 9 (b) 1, 4	, 2	(c) 1, 2, 4	(d) 4, 1, 2	
65.	At what angles for the first order diffraction, spacing between two planes respectively are λ				
	and $\lambda/2$?				
	(a) 0°, 90° (l	o) 90°, 0°	(c) 30°, 90°	(d) 90°, 30°	
66.	The ability of an ion to bring about coagulation of a given colloid depends on				
	(a) sign of the charge only	(b) ma	agnitude of charge	e only	
	(c) both charge and magnitu	ide (d) no	ne of these		
67.	The rate of reaction, $A + B_2 \longrightarrow AB + B$ is directly proportional to the				
	concentration of A and inde	pendent of co	ncentration of B ₂	, Hence, rate law is	
	(a) k [A] B ₂] (b) $k [A]^2 [B_2]$	(c) k [A]	$] \qquad \qquad (d) k[B_2]$	
(0)	Tr / Tr C 11 2				
68.	K_p/K_c for the reaction				

CO₂ (g) will be $CO(g) + 1/2 O_2(g)$ (b) \sqrt{RT} $(c)\frac{1}{\sqrt{RT}}$ (a)1 (d) RT Rate constant of a first order reaction is 0.0693 min⁻¹. If we start with 20 mol/ L, it is **69.** reduced to 2.5 mol/L in (a) 10 min (b) 20 min (c) 30 min (d) 40 min The effect of a catalyst in a chemical reaction is to change the **70.** (a) activation energy (b) equilibrium concentration (c) heat of reaction (d) Final product If the enthalpy change for the transition of liquid water to steam is 300 kJ mol⁻¹ at 27°C, 71. the entropy of change for the process would be (b) 10 JK⁻¹mol⁻¹ (c) 1.0 JK⁻¹mol⁻¹ (d) 0.1 JK⁻¹mol⁻¹ (a) 1000 JK⁻¹mol⁻¹ Select the correct statement 72. (a) Joule-Thomson effect is zero in an ideal gas (b) Joule-Thomson coefficient $\mu_{J-T} = \frac{1}{C_B} \left[\frac{2a}{RT} - b \right]$ for a real gas (c) Both (a) and (b) (d) None of the above The efficiency of a Carnot's engine is 100% when 73. (a) sink is placed at 0°C (b) sink is placed at 0 K (c) source is placed at 100 °C (d) source is placed at 400 °C The following mathematical expression is equal to 74. (a) -Temperature -Pressure (b) -Gibbs free energy (c) (d) -Enthalpy *75*. A system in equilibrium is described by the gaseous phase equation Heat $+ SO_2Cl_2$ \longrightarrow $SO_2 + Cl_2$ Which of the following statement is true? (a) Addition of Cl₂ will shift the equilibrium towards right and temperature is raised (b) Addition of Cl₂ will shift the equilibrium towards left and temperature is raised (c) Addition of Cl₂ and SO₂ will shift the equilibrium towards left and temperature is raised (d) Addition of Cl₂ and SO₂ will shift the equilibrium towards left and temperature is lowered

83.	When the solid compound AB and the liquid phase have identical composition at the maximum point on the freezing point curve, the corresponding temperature is said to bof the compound.				
	(a) eutectic point (b) Congruent Melting Point				
	(c) isotactic point (d) invariant point				
84.	In uranyl oxalate actinometer, the concentration of used upis a measure of the				
	intensity of radiation. (a) KMnO ₄ (b) uranyl oxalate (c) iodine (d) oxalic acid				
85.	Stark-Einstein law states about between reactant and product.				
	(a) photochemical equivalence (b) photochemical equilibrium				
	(c) photochemical balance (d) photochemical reversibility				
86.	Which gas is adsorbed to the maximum extent on the given surface?				
	(a) NH_3 (b) H_2 (c) N_2 (d) O_2				
87.	Which of the following compounds shows both Frenkel and Schottky defects? (a) NaCl (b) AgCl (c) AgBr (d) KCl				
88.	Polymer obtained by condensation polymerization is				
	(a) polyethene (b) Teflon (c) PVC (d) phenol-formaldehyde resin				
89.	The maximum work a system can perform is equal to the decrease in				
	(a) Enthalpy change (Δ H) (b) Helmholtz work function change (Δ A)				
00	(c) Gibbs free energy change (ΔG) (d) none of these				
90.	The salt bridge in the electrochemical cell serves to (a) increase the rate at which equilibrium is attained				
	(b) increase the voltage of the cell				
	(c) maintain electrical neutrality				
	(d) increase the oxidation/reduction rate				
01	A 4'4-4'				
91.	A titration of oxalic acid solution was performed with 0.01 N solution of KMnO ₄ . Of different activities given below, which one leads to a method error in the				
	measurement:				
	(a) using uncalibrated burette				
	(b) carrying out the titration at room temperature				
	(c) reading burette with lower meniscus				
	(d) rinsing the pipette with oxalic acid solution before use				
92.	Chemical oxygen demand for waste water can be expressed as:				
	(a) μ g / mL (b) mg / mL (c) ppt (d) μ g / L				
93.	A 0.1 M aqueous solution of sodium carbonate was prepared by weighing 1.06 g of anhydrous material, dissolving it into about 70 mL of water and making up the				
	volume to 100 mL. Standard solution of which of the following substances can be				
	used to standardize the prepared sodium carbonate solution?				
	(a) oxalic acid (b) succinic acid				
	(c) monosodium oxalate (d) potassium hydrogen phthalate				
94.	Among the following, identify the replicates in chemical analysis.				
	(a) ten students performed gravimetric determination of a solution of silver nitrate by precipitating silver chloride by pipetting 25 mL each of the given stock solution				

	 (b) one student determined hardness of three samples of water by performing one titration each of the three solutions with standard EDTA (c) one student standardized 100 mL of dilute sodium hydroxide solution by titrating 10 mL each of the solution three times with standard acid solution. (d) one student analyzed the given 10mL, 25 mL and 50 mL of ferric chloride solutions for gravimetric determination of iron
95.	In the solvent extraction of Fe(III) from 6 molar HCl solution containing 200 mg at
	pH 4.4, using oxine, a single extraction results into extraction of 100 mg of Fe(III),
	while at pH 6.4, about 5 mg of Fe(III) gets extracted. What is pH 4.4 called?
	(a) pKa (b) pKb (c) $pH_{1/2}$ (d) $pH_{2/3}$
96.	Which of the following electrode combinations cannot be used for determination of
	pH of an aqueous solution?
	(a) silver / silver chloride electrode with standard hydrogen electrode
	(b) standard hydrogen electrode with another standard hydrogen electrode
	through salt bridge (c) standard hydrogen electrode with standard calomel electrode
	(d) a glass electrode coupled with a standard calomel electrode
	(d) a glass electrode coupled with a standard caroliner electrode
97.	Which of the following conditions is true when there in no weight loss in a DTG curve?
	(a) $dW/dt \neq 0$ (b) $dW/dt = 0$ (c) $dW/dt > 1$ (d) $dW/dt < 1$
	(a) d w/dt = 0 (b) d w/dt = 0 (c) d w/dt > 1 (d) d w/dt < 1
98.	One of the factor affecting intensity of absorption bands in UV-Visible spectra is
	probability of electronic transition. Which of the following transitions would give
	most intense bands?
	(a) d-d transition (b) $n-\pi^*$ transition
	(c) donor HOMO to acceptor LUMO (d) f-f transition
99.	Which of the following is not a suitable technique for assay of sodium and
	potassium in blood samples?
	(a) AAS (b) FAES (c) ICP-AES (d) IR
100.	Pick up odd one from the following:
	(a) Photomultiplier tube (b) Bolometer (c) Thermocouple (d) DTGS
	detector